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Abstract
We investigate the temperature dependence of charge ordered clusters in manganites. In terms
of an approximate treatment of the half-filled spinless Holstein model incorporating the double
exchange effect and nearest-neighbor Coulomb interactions, we find that charge ordering and
polaronic states appear simultaneously which naturally defines a correlated polaron state.
Without the double exchange, the temperature evolution of the charge (polaron) ordering
parameter exhibits a broad peak structure only in the strongly correlated quasiadiabatic regime.
Including the double exchange, the peak becomes sharper and is observed both in the
quasiadiabatic and antiadiabatic regimes. The peak structure in the quasiadiabatic regime
provides an explanation for the temperature dependence of the polaron correlation in nanoscale
charge ordered polaron clusters observed in the manganites with intermediate to narrow
bandwidths.

1. Introduction

Electron–phonon interaction (EPI) is believed to be important
in strongly correlated electronic systems such as high-TC

superconducting cuprates [1, 2] and colossal magnetoresistive
manganites [3, 4]. When the EPI is strong enough,
polarons usually form which are physical entities made of
electrons self-localized by the strong lattice deformations
that surround them. While it has been accepted that the
Jahn–Teller type of EPI plays an essential role in various
properties of the manganites [3, 4], recently it has been
observed that not just polarons but, more importantly, their
correlation and the resulting short range cluster structures are
of paramount importance to the large magnitude of various
colossal effects observed in the manganites such as the colossal
magnetoresistance effect (CMR) [5–9] and the colossal
electroresistance effect (CER) [10]. These up-to-date findings
stress the importance of studying many-polaron systems in the
presence of strong electronic correlations [11–15].

In neutron and x-ray scattering experiments on the CMR
manganites [5–8, 16], short range polaron correlations that
are consistent with the formation of charge ordered clusters
with ordering wavevector the same as in the half-doped case
appear as the Curie temperature is approached from below.
The intensity of these correlations then decreases with further

increasing the temperature and so peaks very close to TC. This
is in sharp contrast to the number of the polarons which also
increases rapidly as the Curie temperature is approached from
below but then is roughly constant. The polaron ordering is
shown to be short range in nature with a correlation length of
about 10 Å, which is nearly temperature-independent [5, 7].
Since the intensity of the short range polaron correlations and
the resistivity have very similar temperature dependence, it has
been argued that correlated polarons instead of uncorrelated
randomly localized polarons are primarily responsible for the
insulating character of the paramagnetic state and the amplified
magnetoresistive effects [7, 11].

While the existence and the peak structure in the
temperature evolution of short range polaron correlations have
both been obtained in numerical simulations based on the
microscopic model for manganites [11], it is still unclear
whether the nonmonotonic peak structure of the polaron
correlations is a proprietary property of the CMR manganites
where the double-exchange (DE) effect is essential [17] or
a common feature of strongly correlated electronic systems
with substantial EPI. In an exact diagonalization study of the
t–J model coupled with various different types of EPI on
small clusters, charge ordered structures which are indicative
of correlated polaron states are observed, but the temperature
evolution behavior is unexplored [18]. In a work studying the
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reentrant behavior of the charge ordering (CO) transition in the
manganites, the temperature evolution of the CO is investigated
but the DE effect is not adequately taken into account [19, 20].
An earlier work [21] discussed the temperature evolution of
nanoscale polaron clusters in the form of bipolarons, but the
possibility of charge ordering was not investigated.

In the present work, we study the above problem in terms
of the single-band spinless Holstein model incorporating the
DE and nearest-neighbor Coulomb interaction simultaneously.
Since the correlation length of the charge ordered polaron
clusters is only weakly temperature-dependent [5, 7], the peak
structure observed in experiments is regarded as reflecting
the strength of the CO parameter. Therefore, in this paper,
we study long range CO states in half-filled systems as an
idealization and approximation of the short range clusters.

Calculations based on unbiased numerical methods such
as exact diagonalization are usually restricted to small
systems [13, 22] due to the limitation of computer capacity.
On the other hand, simpler approximate treatments are known
to give both qualitatively correct behavior of the system
and also intuitive analytical results [23–28]. We treat the
electron–electron interaction and the DE in terms of a mean-
field approximation and perform the conventional Lang–Firsov
transformation [26, 29–31] to eliminate the EPI part of the
Hamiltonian. We show that polarons form simultaneously
with the CO structure. The CO state in the presence of EPI
is essentially a correlated polaron state and the CO evolution
also characterizes the evolution of the intensity of polaron
correlation. We further investigate the temperature evolution of
the CO parameter, or equivalently, polaron correlation strength.
Without the DE, a peak structure is observed in the strongly
correlated quasiadiabatic regime, while in the antiadiabatic
and less correlated quasiadiabatic regimes, the CO parameter
decreases monotonically with increasing temperature. When
the DE is considered, a peak in the temperature evolution
of the CO parameter appears both in the quasiadiabatic and
antiadiabatic regimes when the nearest-neighbor Coulomb
interaction is sufficiently strong.

It is argued that the novel temperature dependence of
the polaron correlations is a manifestation of the competition
between the entropy of the polarons tending to destroy the
CO (correlated polaron) structure and the bandwidth narrowing
effect due to polaron formation and the DE effect, which
tends to enhance the CO and polaron correlations. The
above results provide an explanation for the experimentally
observed peak structure in the temperature evolution of polaron
correlations [5–8, 16] in the CMR manganites, which belong
to the strongly correlated quasiadiabatic regime [3, 32, 33].
By explicitly including the double exchange mechanism, the
obtained temperature evolution of the polaron correlation fits
the experimental data for manganites better than previous
works [19, 20]. Our result also indicates that a similar effect
should be observable in other strongly correlated electronic
systems without DE but with EPI in the quasiadiabatic regime.

The rest of this paper is organized as follows. In section 2,
we introduce the model and illustrate the methods used to
treat it. In section 3, we show that polarons always appear
simultaneously with the CO. Then we study the temperature

dependence of the charge (polaron) ordering for some typical
parameter sets, and give qualitative explanations for the results.
In the end, a brief summary is given in section 4.

2. Model and method

The Hamiltonian of the single-band spinless Holstein model
with the DE and nearest-neighbor Coulomb interaction is
written as [20]

H = −t
∑

i,δ

cos

(
θi,i+δ

2

)
c†

i ci+δ + V

2

∑

i,δ

nini+δ

+ λ
∑

i

ni Qi + 1
2

∑

i

(κ Q2
i + P2

i /M). (1)

ci (c†
i ) annihilates (creates) a spinless fermion on lattice site i

and ni = c†
i ci is the fermion number operator on site i. The

first term of the Hamiltonian describes the electron hopping
between nearest-neighboring lattice sites with δ denoting the
hopping directions. The factor cos( θi,i+δ

2 ) accounts for the
DE with θi,i+δ representing the angle between the local spins
residing on sites i and i + δ, respectively [3, 17]. The
second term stands for the Coulomb interaction between
electrons residing on nearest-neighboring sites with strength
V . Earlier works indicate that in manganites the nearest-
neighbor Coulomb interaction functions similarly in stabilizing
the CO state to the Jahn–Teller effect which is rooted in the
twofold degeneracy of the eg orbit [34–36]. In our simplified
spinless single-orbit model, the nearest-neighbor Coulomb
interaction is the only mechanism that may induce the CO.
The third term represents a local coupling between the lattice
displacement Qi and the electron occupation. The last term
denotes the elastic and kinetic energy of the phonons. The
suppression of the spin degrees of freedom can be ascribed
either to strong Hund coupling [3] or to strong on-site Coulomb
correlation [37] in the manganites.

When the phonon operators of the Hamiltonian are written
in the second quantization form, the Hamiltonian becomes

H = −t
∑

i,δ

cos

(
θi,i+δ

2

)
c†

i ci+δ + V

2

∑

i,δ

nini+δ

+ √
EPω0

∑

i

ni(b
†
i + bi) + ω0

∑

i

b†
i bi, (2)

where the constant energy of the zero-point motion of the
lattice is neglected and bi (b†

i ) is the annihilation (creation)
operator of a phonon on site i. Throughout this paper, we set
h̄ = kB = 1. The relationship between the parameters in the
two forms of the Hamiltonian, equations (1) and (2), are ω0 =√

κ/M and EP = λ2/(2κ). ω0 is the energy of the single-
mode phonon and EP is the energy for polaron formation.
There are three normalized characteristic energy scales in the
problem. The first is V/t , measuring the strength of electron
correlation favoring charge ordered phases. Another is ω0/t
which determines the degree of adiabaticity of the system [38].
The last is EP/t which measures the strength of the EPI.

Following standard procedures we make approximations
to the above model to arrive at a tractable theoretical
framework. First we make the well-known Lang–Firsov
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transformation [20, 26, 29–31] H̄ = e−S H eS to eliminate the
EPI term, where

S =
√

EP

Nω0

∑

i,q

eiq·Ri c†
i ci(b

†
q − b−q). (3)

N denotes the number of lattice sites which is also the number
of wavevectors in the first Brillouin zone. The result of the
transformation is

H̄ = −t
∑

i,δ

cos

(
θi,i+δ

2

)
c†

i ci+δ X†
i X i+δ + V

2

∑

i,δ

nini+δ

− EP

∑

i

ni + ω0

∑

i

b†
i bi, (4)

where

X i = exp

[√
EP

Nω0

∑

q

eiq·Ri(bq − b†
−q)

]
. (5)

The factor X†
i X i+δ describes the influence of the EPI on the

electron hopping processes. In the lowest order approximation,
we will replace it by its thermodynamic average, which turns
out to be

〈X†
i X i+δ〉 = e−ST , (6)

where

ST =
∑

q

EP

Nω0
(1 − cos(q · δ)) coth

βω0

2
= EP

ω0
coth

βω0

2
,

(7)
with no dependence on either i or δ.

Next, we treat the Coulomb interaction term in the mean-
field approximation by making the replacement nini+δ �
ni〈ni+δ〉 + 〈ni〉ni+δ − 〈ni〉〈ni+δ〉. In this work, we focus on
the half-filled case. The ansatz for the mean-field occupation
number of the spinless fermions is taken to be

〈ni〉 = n + δn cos(Q0 · Ri), (8)

where Q0 is the modulation wavevector which is determined
by the filling fraction of the spinless fermions in the
system. In half-doped bulk manganites, the CO state is of
CE type characterized by a charge modulation wavevector
of (π, π, 0) with concomitant ferromagnetic zigzag chains
coupled antiferromagnetically [3, 39, 40]. The nearest-
neighbor antiferromagnetic couplings between local t2g spins
are shown to be crucial to stabilize this structure [40]. In
this work aimed at providing a qualitative interpretation of the
temperature evolution behavior of small half-doped clusters
concomitant with the ferromagnetic to paramagnetic transition
in less than half-doped manganites [5, 7], we will only consider
ferromagnetic and paramagnetic CO states and avoid the above
complications by considering the CO state characterized by
Q0 = (π, π, π). This type of charge modulation is also most
natural when the DE is absent.

Finally, we also treat the DE factor in terms of a mean-field
approximation [41, 42]. The DE factor is rewritten in terms of
the local spin vectors:

cos

(
θi,i+δ

2

)
=

√
S2 + Si · Si+δ

2S2
. (9)

Near the Curie temperature, the DE factor can be approxi-
mately expanded as 1√

2
(1 + Si·Si+δ

2S2 ), where higher-order terms
of the expansion are neglected. Substituting this expansion into
the Hamiltonian, the effective Hamiltonian for the local spins
is obtained as

H̄S = −
√

2t

4S2
e−ST

∑

i,δ

c†
i ci+δSi · Si+δ . (10)

In order to study the temperature evolution of the local spin
system, we replace the electronic bond operator c†

i ci+δ by its
average. Because we consider a long range CO phase, these
averages should be independent of either i or δ. We have

c†
i ci+δ −→ 〈c†

i ci+δ〉 = 1

Nz

∑

i,δ

〈c†
i ci+δ〉 = −1

zt
εB, (11)

where z is the coordination number and εB is the band energy
per site [41]. Defining the effective coupling constant between
local spins as J =

√
2

4zS2 e−ST (−εB), H̄S becomes

H̄S ≈ −J
∑

i,δ

Si · Si+δ . (12)

Applying the standard Curie–Weiss type of mean-field
approximation to the above effective Hamiltonian, the
magnetization per site is determined by the following self-
consistent relationship:

〈Sz〉/S = 2S + 1

2S
coth

(
2S + 1

2S
x

)
− 1

2S
coth

(
1

2S
x

)
, (13)

where x = 2z J S
T 〈Sz〉. The Curie temperature TC is determined

by the following self-consistent relationship:

TC = 2z J (TC)

3
S(S + 1) =

√
2(S + 1)

6S
e−ST=TC (−εB(TC)).

(14)
In order to study the CO state of the electrons, we
approximately substitute the DE factor in equation (4) by [39]

√
1 + Si · Sj/S2

2
≈

√
1 + 〈Si · Sj〉/S2

2

=
√

1 + (〈Sz〉/S)2

2
= f (T ). (15)

After the above approximations are made, we can
Fourier transform the model Hamiltonian equation (4) into the
wavevector space. The resulting Hamiltonian is written as

H̄ ≈
∑

k∈B Z

(−EP + e−ST f (T )εk)c
†
kck + ω0

∑

q

b†
qbq

+ 1
2 V · δn · γQ0

∑

k∈B Z

(c†
kck+Q0 + c†

k+Q0
ck), (16)

where γQ0 = ∑
δ eiQ0·δ and εk = −2t (cos kx + cos ky +

cos kz). The temperature-dependent quantity e−ST defined in
equation (7) is seen to be accounting for the effect of bandwidth
narrowing by the formation of polarons. Since now the
electronic and the phononic parts are independent, properties
corresponding to the two systems can be treated separately.
When finite temperature quantities are studied, a chemical

3
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potential term which will be used to ensure the correct electron
filling should be incorporated into the Hamiltonian which then
becomes

K̄ = H̄ − μ
∑

k∈B Z

c†
kck. (17)

The chemical potential μ is determined by the condition

Ne =
∑

i

〈c†
i ci〉K̄ =

∑

k∈B Z

〈c†
kck〉K̄ , (18)

where Ne is the total number of electrons in the system which
is determined by the filling fraction.

3. Results and discussions

3.1. The correlated polaron state

According to the experiments on CMR manganites, polaron–
polaron correlations lead to short range clusters of small
lattice polarons with the ordering wavevector the same as that
in the half-doped materials [6, 7]. The correlated polaron
state [11, 43] can be defined to be a state composed of
polarons distributed in an ordered pattern. The appearance
of a polaronic state is indicated by the bimodal distribution
of phonon displacement 〈Qi〉 [13, 15]. Because we have
made a canonical transformation to the original Hamiltonian
to eliminate the EPI term, the finite temperature quantum
statistical averages should also be transformed accordingly.
Taking an arbitrary operator Â as an example

〈Â〉K = 1

Z
Tr(e−β(H−μN̂) Â) = 1

Z
Tr(eSe−β(H̄−μN̂ )e−S Â)

= 〈e−S ÂeS〉K̄ = 〈 ˆ̄A〉K̄ , (19)

where Z = Tr(e−β(H−μN̂)) = Tr(e−β(H̄−μN̂ )) is the partition
function. The lower labels K and K̄ indicate that the quantum
statistical averages are performed under K (= H − μN̂ ) and
K̄ , respectively. The definition of Qi is

Qi =
√

ω0

2κ
(bi + b†

i ) =
√

ω0

2Nκ

∑

k∈B Z

(bk + b†
−k)e

ik·Ri . (20)

Its quantum statistical average is

〈Qi〉K =
√

ω0

2Nκ

∑

k∈B Z

[〈b̄k〉K̄ + 〈b̄†
−k〉K̄ ]eik·Ri

=
√

ω0

2Nκ

∑

k∈B Z

[
〈bk〉K̄ + 〈b†

−k〉K̄

− 2

√
EP

Nω0

∑

l

〈c†
l cl〉K̄ e−ik·Rl

]
eik·Ri

= −λ

κ
〈c†

i ci〉K̄ = −λ

κ
〈c†

i ci〉K = −λ

κ
〈ni〉K . (21)

The above relationship is equivalent to those used in the
exact diagonalization studies where the phonon operators are
treated classically [13, 44, 45], and is valid no matter whether
the DE is considered. It indicates that the polarons always
form simultaneously with the appearance of the CO state,
and the distribution of the polarons exactly follows the charge

Figure 1. (a) Charge (polaron) ordering parameter, (b) band
narrowing factor and (c) normalized entropy as functions of the
normalized temperature with and without the DE, in the strongly
correlated quasiadiabatic regime. Note: in (c), the two curves almost
coincide and are hardly distinguishable.

distribution. The strength of the polaron correlations is thus
reflected by the CO parameter δn. Further works by more
accurate numerical and analytical methods are favored to study
the extent of the validity of the above approximate relationship.

3.2. Temperature evolution of the correlated polaron state

Figure 1(a) shows the temperature evolution of the charge
(polaron) ordering parameter for ω0/t = 0.3, V/t = 0.5
and EP/t = 0.5. ω0/t = 0.3 corresponds to a typical
quasiadiabatic phonon frequency [38]. The inter-site electron
interaction V/t = 0.5 is strong compared to the typical
values V/t ∼ 0.1–0.2 estimated for the manganites due to
a large dielectric constant [40]. The polaron binding energy
EP/t = 0.5 characterizes a typical intermediate strength of the
EPI [3]. Therefore, the present case corresponds to the strongly
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correlated quasiadiabatic regime [38, 40]. A peak structure is
observed in both the systems with and without the DE effect.

We argue that the peak structure appears as a result of
the competition between the energy band narrowing effect
and the entropy of the polaronic system. The energy band
narrowing due to polaron formation and the DE effect reduces
the effective hopping integral and so enhances the relative
strength of the Coulomb interaction, which tends to promote
the CO structure, while the entropy which increases with
temperature tends to destroy any ordered structures. According
to equation (16), the band narrowing effect is described by the
dimensionless factor e−ST · f (T ). The entropy per site from
the electronic part of equation (17) can be calculated as

S = 1

2N

∑

k∈B Z,α

[
ln(1 + e−βεkα ) + βεkα

eβεkα + 1

]
, (22)

where α labels the two eigenvalues obtained by diagonalizing
the electronic part of equation (17) for a given k. The
temperature evolutions of the above two quantities are shown
in figures 1(b) and (c). Both in the presence and in the absence
of the DE effect, the bandwidth narrowing starts to show up
at a much lower temperature than the entropy T S/t deviates
from zero, which contributes to the initial increase of δn. The
polaronic part of the bandwidth narrowing factor e−ST starts
to decrease at T/t � 0.05. The DE part of the bandwidth
narrowing factor f (T ) begins to decrease at a much lower
temperature and stops decreasing above the Curie temperature
TC � 0.02t . When both the polaron formation and the DE are
playing roles, the difference in the characteristic temperatures
of the two factors results in a two-step increase of the CO
parameter δn, as can be seen in figure 1(a). The entropy term
is almost the same with or without the DE effect, as shown in
figure 1(c). T S/t begins to increase rapidly at T/t � 0.22,
which leads to the decrease of δn. The competition between
the bandwidth narrowing and the entropy thus gives rise to a
peak structure in the temperature evolution of δn.

Figure 2 shows the result for ω0/t = 3, V/t = 0.5
and EP/t = 0.5, which belongs to the strongly correlated
antiadiabatic regime [38, 40]. From figure 2(a), only when
the DE effect is considered can a peak structure be observed,
even if V/t = 0.5 is large compared to realistic values for
the CMR manganites, which are typically in the range V/t ∼
0.1–0.2 [40]. By comparing the two curves in figure 2(b), we
can find that now the bandwidth narrowing, which induces the
initial increase of δn, almost completely comes from the DE
factor. The polaronic bandwidth narrowing will occur at a
characteristic temperature proportional to ω0, which is much
higher than the temperature where the effect of the entropy
term becomes significant, as can be seen from figures 2(b)
and (c). This explains the absence of a peak structure in the
absence of the DE effect. As compared to figure 1, where
the polaronic bandwidth narrowing contributes dominantly to
the appearance of the peak structure, the peak induced by the
DE effect in figure 2 is sharper with a faster increase at low
temperatures.

The temperature dependence of δn for several smaller
values of V/t is shown in figure 3. For V/t = 0.1 and

Figure 2. (a) Charge (polaron) ordering parameter, (b) band
narrowing factor and (c) normalized entropy with and without the DE
as functions of the normalized temperature in the strongly correlated
antiadiabatic regime.

ω0/t = 0.3, as shown in figure 3(a), δn does not show a
peak structure in the absence of the DE and a peak appears
when the DE is switched on. This clearly indicates that the
critical value of V/t for the appearance of the peak structure
is reduced in the presence of the DE. In the presence of the
DE, with a decrease of V/t to 0.08, the CO parameter exhibits
a reentrant-like behavior [19, 20], which first decreases, then
increases and finally decreases again with temperature, giving
rise to a peak structure. The peaks observed in the above two
cases are both due to the bandwidth narrowing effect caused by
the DE effect, and the positions of the peaks are very close to
the Curie temperatures. With a further decrease of V/t to 0.06,
δn becomes monotonic with changing temperature without
showing a peak even in the presence of the DE, as shown
also in figure 3(b). In the antiadiabatic regime ω0/t = 3, δn
decreases monotonically with temperature even for a relatively

5
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Figure 3. Temperature dependence of the charge (polaron) ordering
parameter with and without the DE for some different parameter sets.

large V/t = 0.3 and in the presence of the DE, as shown in
figure 3(c).

In the above calculations, we have fixed EP/t = 0.5,
and ω0/t = 0.3 and 3 are used as two characteristic phonon
frequencies belonging respectively to the quasiadiabatic and
antiadiabatic regimes. Changing the value of EP/t will
not change the qualitative features of the result. For the
manganites, ω0 is estimated to range from 0.06 to 0.09 eV,
while the bare hopping integral t is estimated to be in the range
of 0.2–0.5 eV [3]. Therefore, the CMR manganites with typical
intermediate or narrow bandwidth characterized by relatively
small t belong to the quasiadiabatic regime. Our results above
indicate that the peak structure observed in the temperature
evolution of the polaron correlations in the manganites should
be a combined effect of both the DE and the EPI. Besides, our
results also suggest that a similar peak structure may also occur
in other strongly correlated electron systems without the DE in
the quasiadiabatic regime.

4. Summary

Summarizing, we have studied the temperature evolution
of the charge ordered state in terms of the half-filled
spinless Holstein model including the DE and nearest-neighbor
Coulomb interaction. We show that polarons always form
simultaneously with the appearance of the charge order,
which naturally defines a correlated polaron state. A formal
relationship between the formation of polarons and the
appearance of charge order in CMR manganites is provided
and discussed for the first time. Our results demonstrate
that, in the strongly correlated quasiadiabatic regime, the
temperature evolution of the charge (polaron) ordering shows
a peak structure both with and without the DE effect. In
the strongly correlated antiadiabatic regime, only when the
DE effect is included can a peak structure appear. In
other parameter regimes where the charge order can appear,
monotonic temperature dependence of the CO parameter is
observed. The results are argued to arise from the competition
between the band narrowing effect and the entropy of the
polaronic system. Because the manganites usually belong to
the strongly correlated quasiadiabatic regime, the above result
gives an explanation to the peculiar peak structure observed
in the temperature evolution of the intensity of the polaron
correlations in many CMR manganites.
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